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An Iterative Solution Method for 
Linear Systems of Which the 

Coefficient Matrix is a Symmetric M-Matrix 

By J. A. Meijerink and H. A. van der Vorst 

Abstract. A particular class of regular splittings of not necessarily symmetric 

M-matrices is proposed. If the matrix is symmetric, this splitting is combined with 
the conjugate-gradient method to provide a fast iterative solution algorithm. Compar- 
isons have been made with other well-known methods. In all test problems the new 
combination was faster than the other methods. 

1. Introduction. A time-consuming part of the numerical solution of partial dif- 
ferential equations using discretization methods is often the calculation of the solution 
of large sets of linear equations: 

(1.1) Ax = b, 

where A is usually a sparse matrix. 
In this paper, iterative solution methods will be presented which are restricted to 

equations where A is a symmetric M-matrix,* although symmetry is not required in 
most of the theorems. This type of matrix is often generated, e. g., by discretization 
of elliptic and parabolic differential equations. For an extensive study on this subject, 
see [7]. 

Most of the iterative methods are based on the following idea: If K is an arbi- 
trary nonsingular matrix, then A = K - R represents a splitting of the matrix A and 
associated with this splitting is an iterative method 

(1.2) Kxn+l = (K-A)xn + b = Rxn + b 

or 

(1.3) Xn+I =Xn +K-'(b-Axn)=Xn + Xn 
The more K resembles A, the faster the method will converge. On the other hand, we 
have to solve the equation 

(1.4) KAxn = b-Axn, 

during every iteration so K has to be such that only few calculations and not too much 
memory storage are required to achieve this. For instance, the choice of K to be the 
diagonal matrix equal to the diagonal of A leads to the Jacobi iterative method, while 
the Gauss-Seidel iterative method arises by choosing K to be the lower triangular part 
of A. For both these choices the solution of (1.4) is straightforward. 
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* A matrix A = (aij) is an M-matrix if aij < 0 for i 0 j, A is nonsingular and A 1 > 0. 
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For other choices of K, the direct solution of (1.4) is equivalent to the LU-de- 
composition of K and the solution of the equations 

(1.5) Lyn = b - Axn 
and 

(1.6) UAxn =Yn. 

The choice of K most ideal for the iteration process is A, since only one iteration is 

needed, but the LU-decomposition of A requires a large number of calculations and 
much memory storage, since L and U are usually considerably less sparse than A. This 
suggests we look for matrices K = LU which resemble A, with L and U almost as sparse 
as A. 

In [6], Stone presents a method that is based on this idea. 
In Section 2 we shall introduce another class of such matrices K. We shall call 

this class "Incomplete LU-decompositions of A". It will be proven that this class is not 
empty and that the splitting A = K - R is a regular splitting** which implies that the 
iterative method (1.2) will converge. 

In Section 3 we shall discuss the stability of incomplete LU-decompositions. 
In Section 4 a successful combination with the conjugate-gradient method will be 

described for symmetric matrices. 
In Section 5 two special types of incomplete decompositions are proposed, while 

in Section 6 results are presented, discussed and compared with results of other familiar 
iterative methods. 

2. Incomplete LU-Decompositions. 
Notation. A lower triangular n x n matrix is denoted by L = (li), so li, = 0 if 

i < j, and an upper triangular n x n matrix by U = (u11). 
As mentioned in the introduction, a matrix K approximating A has to be con- 

structed such that the L and U belonging to K are sparse. This can be realized by 

making an LU-decomposition of A, during which elements are neglected in the L and 

U matrices in appropriate places. That is the reason that we shall call K = LU an 
"incomplete LU-decomposition of A". 

Theorem 2.3 guarantees the existence of incomplete LU-decompositions. In 
these L and U, zeros may occur in arbitrary off-diagonal places, which can be chosen 
in advance. These places (i, j) will be given by the set 

PC Pn {(i, i) Ii j, 1 i <n, 1 j i n}. 

Note that Pn contains all pairs of indices of off-diagonal matrix entries. The various 

algorithms arise by choosing these places. Some choices for special matrices will be 

described in more detail in Section 5. 
In the proof of Theorem 2.3 the incomplete LU-decomposition is obtained via 

Gauss elimination. The proof requires two theorems about operations on M-matrices. 

* *For n x n real matrices A, K and R, A = K - R is a regular splitting of the matrix A if K 
is nonsingular, K-1 > 0 and R > 0. 
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The first theorem shows that the matrix that arises from an M-matrix after one elimina- 

tion step is again an M-matrix. 
THEOREM 2.1 (KY FAN [2, p. 44]). If A = (aij) is an M-matrix, then A = (a.) is 

so, where Al is the matrix that arises by eliminating the first column of A using the 

first row. 
The second theorem will be used to be able to omit appropriate nondiagonal ele- 

ments during the construction of the incomplete LU-decomposition of A. 

THEOREM 2.2. Let A = (aij) be an n x n M-matrix and let the elements of 

B = (bij) satisfy the relations 

ai <bij b60 fori zj 

and 0 aii ? bi. Then B is also an M-matrix. 
Proof. The proof is essentially the same as a proof given by Varga [7, Proof of 

Theorem 3.12]. 
Let DA be a diagonal matrix whose diagonal entries are given by dii = 1aii, and 

let DB be defined in the same way. Let QA and QB be defined by 

QA =I-DAA and QB =I- DBB. 

Since A is an M-matrix, the spectral radius P(QA) of QA satisfies 

P(QA) < 1 (see [7, Theorem 3.10]), 

and as from the assumptions it follows that 0 6 QB < QA' we have 

P(QB) < P(QA) < 1 [7, Theorem 2.8]. 

From [7, Theorem 3.10] it follows that B is an M-matrix. 0 

THEOREM 2.3. If A = (aij) is an n x n M-matrix, then there exists for every 

P C Pn a lower triangular matrix L = (lij), with unit diagonal (lii = 1), an upper triangu- 

lar matrix U = (u1j) and a matrix R = (rij) with 

lij= 0 if(i, j) ep, 

uij 0 if(i,j)eP, 
ri =0 if (i, j) fP, 

such that the splitting A = LU - R is regular. The factors L and U are unique. 

Proof. The proof of this theorem also gives a way to construct L and U. The 

construction process consists of n - 1 stages. The kth stage consists of subtracting 

from the current coefficient matrix the elements with indices (k, j) and (i, k) e P and 

then reducing the matrix in the usual way. So let us define the matrices 

Ak = (ai) Zk = (a k), Lk - (lb) and Rk=(rk) 

by the relations: 
AO = A 
A =Ak +Rk fork= 1 ... In 
Ak = LkA 

Here the matrix Rk is defined by 

rkkj =- a, 1,I if (k, j) GE P. 

rik = - alk- 1, if (i, k) eP and all other rA are equal to zero. k ik eIequa 
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Lk is equal to the unit matrix, except for the kth column, which written row-wise, is 
as follows 

ak___I 
___ __ 

k nk 

kO.k ak+2k .'k] 
a kk akk akkJ 

From this it can easily be seen that Ak is the matrix that arises from Zk by elimin- 

ating the lowermost n - k elements in the kth column using the kth row. 

AO = A is an M-matrix, so R1 > 0. From Theorem 2.2 it follows that A"' is an 

M-matrix. Therefore L1 > 0 and applying Theorem 2.1 we see that A1 is an M-matrix. 

Continuing in this manner, we can prove that 

Ak is an M-matrix 
A k is an M-matrix 
Lk>O for k= 1)..., n-1. 

Rk > o 

From the definitions it follows immediately that 

LkRm =Rm if k < m, 

n-l Ln-1L An =n-LAn-2 + Ln-=Rn-A 

Ln- lLn-2' n-2 + Ln- lRn-I1_. = Ln- lLn-2 .. * LA0 

+ L 'Ln-2 ... L1R1 + Ln-'Ln-2 ...L2R2 +** + Ln-1'Rn- 

By combining these equations, we find 

An-1 = Ln-'Ln-2 ... L1(A + R1 + R2 + --- + Rn-1) 

Let us now define U = An - I) L (Ln-'Ln-2 * L1)-1 and R = R' + R2+ + 

Rn-I then LU = A + R, (LL/-y > 0 and R > 0, so the splitting A = LU- R is reg- 
ular. The uniqueness of the factors L and U follows from equating the elements of A 
and LU for (i, j) F P, and from the fact that L has a unit diagonal. 0 

For the case where A is in addition symmetric and thus positive definite Theorem 
2.4 gives a symmetric variant of the preceding theorem. This states that a symmetric 

incomplete L U-decomposition can be achieved which contains zeros in a symmetric 

pattern of places indicated in advance. 

THEOREM 2.4. If A is a symmetric M-matrix, there exists for each P C Pn 
having the property that (i, j) e P implies (j, i) E P, a uniquely defined lower triangu- 
lar matrix L and a symmetric nonnegative matrix R, with lii = 0 if (i, j) e P and 

rij = 0 if (i, j) EFP, such that the splitting A = LLT - R is a regular splitting. 
Proof. This theorem follows directly from the fact that Choleski decomposition 

is equivalent to gaussian elimination except for a diagonal matrix. This extra diagonal 
matrix does not affect places which contain zeros. 0 

From the previous theorems the convergence of the method defined in (1.2) - 

(1.4) follows immediately, this is formulated in Theorem 2.5. 
THEOREM 2.5. If A, L, U and R are defined as in Theorem 2.3, the iterative 

method 
LUxi+l =Rxi + b, i > 0, 
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will converge to the solution of Ax = b for every choice of xO. 
Proof This is an immediate consequence of Theorem 3.13 of Varga [7]. 0 
By properly choosing P C Pap we obtain a number of well-known methods: P = Pn 

results in the point Jacobi method, and P = {(i, j) I i < j} results in the point Gauss- 
Seidel method. Also, line and block variants of these two methods can be obtained by 
a proper choice of P. So Jacobi and Gauss-Seidel methods are a subclass of methods 
based on incomplete LU-decompositions, which are themselves a subclass of methods 
based on regular splittings. 

3. Numerical Stability. The question which now arises is whether the construc- 
tion of an incomplete LU-decomposition is stable. In order to answer this question, 
we need Theorem 3.1. This theorem indicates the effect on the decomposition process 
of replacing off-diagonal elements in the matrix by nonpositive elements that are 
smaller in absolute value, as well as the effect of replacing diagonal elements by larger 
ones. 

THEOREM 3.1. Let A = (ai) and B = (bij) be defined as in Theorem 2.2. Let 
AI and B1 be the matrices that arise from A and B by eliminating the first column 
using the first row. 

Then, 

ii bii 
S , 

0<ali ii 

and B1 is an M-matrix. 
Proof 

a!. =aij al b b = O_ for i *1 , 1 ii i a,, a11?b11- 1 

From these relations it follows that bO. < 0, for i # j. Now A' is an M-matrix (Theo- 
rem 2.1), and ail > 0 is a property of M-matrices [7, Theorem 3.10], so from Theorem 
2.2 B1 is also an M-matrix. 0 

The following theorem states that the incomplete LU-decomposition process is 
more stable than the complete LU-decomposition process (without partial pivoting). 

THEOREM 3.2. If A is an M-matrix, then the construction of an incomplete 
LU-decomposition is at least as stable as the construction of a complete decomposition 
A = LU without any pivoting. 

Proof Let A be the matrix that is obtained by setting some off-diagonal elements 
of A to zero in the first column and in the first row (compare Theorem 2.3). Let L 
be the gaussian elimination matrix for the first elimination step on A, and L1 be the 
same for A. 

Then it is obvious that the elements of L 1 are not larger in absolute value than 
the elements of L1. From Theorem 2.1 and Theorem 2.2 it follows that A 1 and Al 
are M-matrices, while Theorem 3.1 states that A1 > A1. From repeated application of 
Theorem 3.1 it follows that the elements of the gaussian elimination matrices Lk' in 
each stage of the incomplete LU-decomposition process, are not larger in absolute value 
than the elements of the gaussian elimination matrices Lk that arise in the complete de- 
composition process. This gives the desired result (see [8] , [9]). [ 
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COROLLARY 1. If A is a symmetric M-matrix, then the construction of an in- 
complete LLT-decomposition is at least as stable as Choleski's process. 

Note. It is well known that in general LU-decomposition without pivoting is not 
a very satisfactory process. Therefore, we consider the practical situation, where A is 
a diagonally dominant M-matrix. It is easy to see that gaussian elimination preserves 
the diagonal dominance of the matrix. Therefore gaussian elimination, in this case, is 
identical with Crout LU-decomposition with partial pivoting, the latter being fairly 
stable. 

4. An Accelerated Method for Symmetric Systems of Equations. If the n x n 
matrix A of the linear system of equations Ax = b is an M-matrix, and LU is an in- 
complete decomposition of A, the iterative process, defined in Theorem 2.5, generates 
a sequence {xn}n>0 that converges to x. From simple analysis it follows that 

(4.1) xi =xO -(i) [(L )-'A] (xo -x) + (2) [(L)-'A]2(xo -x) 

+ (- i)i(.) [(LU)-'A] '(xo - x). 

If A is a symmetric M-matrix (hence, positive definite), an upperbound for the error 
IIX X II (A (xi - x), xi - x) is given by 

(4.2) ||XI-X 112 < [max{l XminIX Ii XmaxI 1}] 211Xo -X II 

with 
n 

(x, y) -Exjyj, 

Xmin is the smallest eigenvalue of (LU-'A, and 
Xmax the largest eigenvalue. 

For this special case of A a symmetric M-matrix, symmetric incomplete LLT-decompo- 
sition can be combined with the method of conjugate gradients. This leads to a sim- 
ilar scheme as (4.1), which is known to be faster. For the discussion of this combined 
method and its main properties, results from [1] and [3] are used. Let M be a square 
nonsingular n x n matrix and let H and K be positive definite symmetric n x n ma- 
trices, N M*HM and T KN, then a conjugate-gradient method to solve the equa- 
tion Mx = b is defined by 

Do an arbitrary initial approximation to x, 
ro = b -Mxo, go = M*HrO pO = Kgo, 

Xi = (gi, pi)/(pi, Npi) = fit Kgi)l(pi, Npi) 

Xi+ 1 = Xi + aiPi 

(4.3) ri+1 = K 
-Mxi+1 

= 
ri 

- 
aiMpi i ,= . 2 1 

gi+ 1 = M*Hri+ 1 = gi - cxiNpi 

pi = - 
(Npi, Kgi+ )/(pi, Npi) 

= 
(gi+1, Kgi+ )/lgi, Kgi) 

pi+1 = Kgi+1 + gpi) 

This method has the following theoretical properties: 
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(1) the sequence {xi}1>O converges to the solution x within n iterations. 
(2) the conjugate-gradient method minimizes 1ixi - X "1N for all i, among all algo- 

rithms of the form 

(4.4) xi = xO + Pi_ 1(T)T(x - xO), 

where Pi_ 1 is a polynomial of degree i - 1. 

(3) 

ixo -xI2ki (4.5) ||xi -x| X 11 N + l) 0 ll -lN. 

where c = Xmax(T)IXmin(T). 
From the choice M = A, H = A1 and K = (LLT)- 1 which results in N = A 

and T = (LLT)-1A, it follows that the iterative method defined in Theorem 2.5 is of 
the form (4.4) and hence from property (2) it follows that the combined method will 
converge at least as fast. Also the two upper bounds for the errors show a substantial 
difference. For this choice the iteration scheme can be written as: 

x0 is an arbitrary initial approximation to x, 

ro= b -AxO, po = (LLT)-lr0, 

(ri, [LLT] - lri) 

(pi ApiA) 
(4.6) 

Xi+1 = xi + aiPi 

ri+1 =ri-a1iApi a n i=0,1,25 25 . . 

= (ri+1, [LLT]-Iri+l) 

i(ri, [LLT1 -1 
lrd 

Pi+ I = [LLT] - Ilri+ 1 + f3pi 

Remark. The inequality (4.5) does not take advantage of the distribution of the 
eigenvalues of T, while the conjugate-gradient method does so. Therefore the upper- 
bound (4.5) might be pessimistic. This happens especially when most of the eigen- 
values of T are clustered in small intervals compared to the interval [k ,('), kax(l)] 

5. Two Applications of Incomplete Decomposition. For a special type of ma- 
trix, two different incomplete decompositions will be introduced in this section. The 
matrix-equation arises from five-point discrete approximations to the second-order 
selfadjoint elliptic partial differential equation: 

(5.1) - a A(x, y) a-u(x, y) - a B(x, y) a U(x, y) + C(X, y)u(x, y) = D(x, y) ax ax ay ay 
with A(x, y), B(x, y) > 0, C(x, y) > 0, and (x, y) E R, where R is a square region, 
and with suitable boundary conditions on R. The resulting symmetric positive definite 
diagonally dominant nth order matrix A = (ai1) is schematically shown in Figure 1. 
Places of zero entries are given by 

(5.2) P*= {(i, 1) I i ijt0, 1, m}, 
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0 I~t0 0 0 

0 0 - I -I\s"'s\ 
_ 0 _ _ I _ - 0_ \ 

FORM OF MATRIX A 

FIGURE 1 

where m is the half bandwidth of the matrix. For the derivation of such linear systems 
see references [6] and [7]. 

The elements of the diagonal of A are denoted by a1, the upper-diagonal ele- 
ments are denoted by bi and the elements of the mth upper diagonal are denoted by 
c,, where i is the index of the row of A in which the respective elements occur. Theo- 
rem 2.4 guarantees the existence of incomplete symmetric decompositions for A. Our 
first application considers the incomplete decomposition that arises in the decomposi- 
tion process when all elements are ignored in those places where A has zero entries. 
This variant is characterized by P*. 

In the following it will be convenient to write the incomplete decomposition in 
the form: LDLT, where D is a diagonal matrix. If the elements of D are denoted by 
d1 and the elements of LT are denoted analogous to A by 3, b1 and ci, then the fol- 
lowing recurrent relations hold for these elements: 

b1=b, c1 C, 

(5.3) "0, i = 1, 2,. ., n, 
a d a- b2 d _1 - C1 -mdi 

where elements that are not defined should be replaced by zeros. 
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Note that, once we have stored A, we need only compute and store the diagonal 
matrix D. Note also that when this process is programmed for a two-level store com- 
puter, for very large matrices, the diagonal D can be constructed by taking successive 
parts of A into fast core. Equation (1.4) reduces to 

LDLTAXi = b -Axi, 

and it is well known that Axi can be determined by solving successively 

Lyi = b - Axi i Dzi = Yi 
and 

LTbx. = zi. 

This first variant of incomplete decompositions for the type of matrices described here, 
in combination with the conjugate gradient method, is referred to by ICCG(O) further 
on (i.e., Incomplete Choleski & Conjugate Gradients, with 0 extra diagonals). 

The second variant is characterized by 

P3 = {(i, 1)1 li-il :# 0, 1, 2, m -2, m - 1, m}. 
In this case, the symmetric decomposition is written as LLT. 

The elements of LT are denoted as follows, where i is counted row-wise again: 

o- b- d- es f c cs 

LT Ll|A 

With the above notations, the elements of LT can be recursively computed as follows: 

a = a-b_1-d22-el- 2 2 - - 

= (bi i- 1 bi1 - im+ i-m+l -fi-m+2ei-m+2)PiX 
(5.4) 0" 0- . 1 1 -1 0- 1 1 1 

di = - ci-m+2ei-m+21ai ei =-( 2di-2 +fi_1bi_1)Pai, 

fI' = - ci- 1 bin_ 1/a1, c1 = ci/a1 for i = 1, 2, ..., n. 
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Elements not defined should be replaced by zeros. It should be remarked that it is 
also possible to avoid the square root computations by a slight modification of the 
Eqs. (5.4). 

This second variant, in combination with the conjugate-gradient method, will be 
referred to as ICCG(3), as it has three more diagonals at each side than the original 
matrix A. 

6. Numerical Results and Comparison with Other Methods. In this section, re- 
sults are presented and compared with results of other iterative methods, for two spe- 
cial cases of Eq. (5.1). However, it should be mentioned that similar results have been 
obtained in other cases. 

We first discuss briefly the different iterative methods. N will denote the order 
of the matrix A. 

ICCG(O). This variant of incomplete decomposition is discussed in Section 5. Each 
iteration of ICCG(O) needs - 16N multiplications. 

ICCG(3). For a discussion see Section 5. Each ICCG(3)-iteration needs - 22N mul- 
tiplications. 

SLOR. Successive Line Over-Relaxation needs - 6N multiplications each iteration 
if intermediate results are stored. 

Conjugate Gradients. See Section 4, where for this case LLT should be replaced by 
the identity matrix. Each iteration needs 1 ION multiplications. If the 
matrix has 'property A', this can be reduced by a factor 2 [5]. 

SIP. The Strongly Implicit Procedure has been described in detail by Stone [6]. 
Each iteration needs - 22N multiplications. 

In interpreting the results of the various methods, it should be noted that any initial 
work, such as the work necessary for the estimation of iteration-parameters or the 
computational work for the decompositions of the ICCG methods, was neglected. This 
did not affect the conclusions seriously, because this initial work will in general be 
negligible compared to the computational work needed for even a small number of 
iterations. The methods are compared on the basis of computational work, which was 
measured, rather arbitrarily, using the total number of multiplications. 

The number of multiplications needed for each iteration is mentioned above. In 
the figures, the number of multiplications required for one single iteration of ICCG(3), 
i.e. 22N multiplications, was chosen as the unit for the computational work. 

Example 1. Equation (5.1) is considered over the square region 0 < x < 1, 
0 < y ? 1, with A(x, y) = B(x, y) = 1, C(x, y) = D(x, y) = 0 and the boundary con- 
ditions au/ax = 0 for x =0 and x = 1, au/ay = 0 for y = I and u = for y = 0. A 
uniform rectangular mesh was chosen, with Ax = 1/31 and Ay = 1/31, which resulted 
in a linear system of 992 equations. The solution of (5.1) is known to be u(x, y) = 1, 
and as initial starting vector for the iterative scheme described in Section 4, a vector 
was chosen with all entries random between 0 and 2. This was done to prevent fast 
convergence by coincident. The results are plotted in Figure 2. 

Example 2. In order to illustrate the' power of the ICCG methods, also for more 
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Residual 

10logllAxi -b112 
4.0 

1 ICCG (0) 
2 ICCG (3) 
3 SIP 
4 SLOR 
5 CONJ. GR. 

0.0 

-4.0- 

-8.0 

-12. L E I I I X [ 

0 20 40 60 

Computational work, 

expressed in number of iterations ICCG(3) 

FIGURE 2. Results for Example 1 

practical nonuniform situations, a problem suggested by Varga [7, Appendix B] was 

considered. Equation (5.1) holds on R, where R is the square region 0 ? x, y ? 2.1, 

as shown below. 

2.1 

2.0 - 
- - - 2.01 

3 

l l 

0 1.0 2.0 2.1 

x_ 

On the boundary of R the boundary conditions are au/an 0. Further D(x, y) =0 

over R and the functions A, B and C are defined by 
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Region A(x, y) B(x, y) C(x, y) 

1 1.0 1.0 0.02 
2 2.0 2.0 0.03 
3 3.0 3.0 0.05 

A uniform rectangular mesh was chosen with mesh spacing 0.05, so a system of 1849 
equations in 1849 unknowns resulted. The solution of this problem is known to be 
u(x, y) = 0; as starting vector for all iterative methods, a vector was chosen similar to 
the one in Example 1. The iteration results are plotted in Figure 3. 

Residual 
10log 11 Ax i - b 112 

8.0 

1 ICCG (O) 
2 ICCG (3) 
3 SIP 
4 SLOR 
5 CONJ. GR. 

4.0 - 

-4.0 - 

-8.01 I I 1 6b 
0 20 40 

Computational work, 
expressed in number of iterations ICCG(3) 

FIGURE 3. Results for Example 2 

These few examples give some impression of the kind of convergence that is typ- 
ical for the ICCG methods. In order to explain this phenomenon, a complete Choleski- 
decomposition of the type of matrix, introduced in Section 5, is considered. It is then 
observed that the nonzero entries in the full decomposition decrease rapidly in magni- 
tude in the directions pointed out below. 
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T ____ ____ ____ 

LT 

As is known, Choleski-decomposition is a stable process, therefore it might be expected 
that setting some of the smaller elements to zero, results in an incomplete Choleski- 

decomposition, which will be like the full decomposition. Thus, the matrix (LLT)- 'A, 
where LLT is an incomplete decomposition, should resemble the identity matrix in 

some way, or more precisely, (LL T)- 'A will have all eigenvalues close to 1.0. The 

fact that conjugate gradients gives fast convergence for matrices with the latter property 
explains to some extent the fast convergence of the ICCG methods. 

In order to give an impression of the eigenvalues of (LLT)- 'A for both the 

ICCG(O) and ICCG(3) methods, a smaller version of the matrix arising in Example 1 
has been chosen. In fact, the choice Ax = 1/5 and Ay = 1/6, resulted in a matrix of 

order 36. In Figure 4 all the eigenvalues of A, (LOLo7)-'A and (L3L )31A are 
plotted. The lower index indicates which ICCG method is considered. 

8 
x 7.503 x EIGENVALUES OF A 

7 x x * EIGENVALUES OF (LOLOT) A 
? EIGENVALUES OF(L3L3T)l1A 

X 

X X 
V) 5 x 

UJ ~~~~~~X 

> 4 x 
Z X X 
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2 X 

1.23 1 
X X 1 ~~~~~~~~~~~~~~~~~X 

1.135 eO ~0.4 119 
0 1 I0 58 
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INDEX, i 

FIGURE 4. Eigenvalues of A, (LIL T)- 'A and (L 3L 3')- 1A 
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FIGURE 5. Effect of number of equations on the rate of convergence 

It follows from formula (4.5) that the error 11xi - x "1A is multiplied at each step 
by at most r = (Vc - 1)/(Vc + 1). This helps explain the fast convergence; for A, 

(LOL T)-'A, and (L3LT)- 'A, respectively, we find r = .84, r0 = .53 and r3 = .23. 
Finally, for the linear equations arising in Example 1, the influence of the order 

of the matrix on the number of iterations required to reach a certain precision was 
checked for both ICCG(0) and ICCG(3). 

Therefore several uniform rectangular meshes have been chosen, with mesh spac- 
ings varying from - 1/10 up to - 1/50. This resulted in linear systems with matrices 
of order 100 up to about 2500. In each case it was determined how many iterations 
were necessary, in order that the magnitude of each entry of the residual vector was 
below some fixed small number e, when starting with x0 = 0. 
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In Figure 5 the number of iterations are plotted against the order of the matrices 
for e = 10-2, e = 10-6 and e = 10-10. It can be seen that the number of iterations, 
necessary to get the residual vector sufficiently small, increases only slowly for increas- 
ing order of the matrix. 

7. Conclusions. In the examples, both ICCG methods appeared to be far superior 
to all the other iterative methods mentioned, except possibly CG when the matrix has 
'property A' [5]. 

If the solution of the linear system is calculated by complete Choleski, the total 
number of multiplications is given approximately by n(m + 1)(m + 2)/2 + 2n(m + 1) 
[8], where n is the order of the matrix and 2m the bandwidth. For n = 900 

this amount of work is equivalent to about 25 ICCG(3) iterations (at this time storage 
aspects are not considered). 

This implies that both ICCG methods can compete with direct solution with re- 
gard to computational work, if we are satisfied with not too high an accuracy. From 
Figure 5 it can be seen that for larger matrices the ICCG methods are to be preferred 
even more. 

These statements also hold if the direct method takes advantage of the very sparse 
structure of the matrices. In this case Price and Coats [4] showed that the total num- 
ber of multiplications for the direct method can be reduced by a factor 6, compared to 
the number mentioned above. 

Finally, we would like to observe that the ICCG methods have also been applied 
very successfully in practice, in solving both two- and three-dimensional problems. 
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